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LONGITUDE REPOSITIONING OF HIGH POWER

COMMUNICATION SATELLITES
by Thomas A. O'Malley

Lewis Research Center

SUMMARY

Communication satellites in synchronous equatorial orbit may have to be reposi-
tioned from one stationary longitude to another. To minimize fuel consumption, the
longitude repositioning maneuver is best effected by changing the orbit period with a
thrust impulse collinear with the orbit velocity vector. The change in orbit period pro-
duces a steady longitudinal drift of the satellite. When the satellite reaches the desired
longitude, a second thrust impulse is applied to restore the synchronous condition. Im-
pulsive thrusting, however, may not be possible if an electric propulsion system is
used. Due to very low thrust levels, continuous thrust over many orbits may be neces-
sary to effect a longitude change in a reasonable length of time. The velocity increment
AV of the repositioning maneuver is a function of the change in longitude, the time of
transit from the initial to the final longitude, and the acceleration imparted to the satel-
lite by the propulsion system.

For a fixed change in longitude and time of transit, there exists a minimum accel-
eration for which longitude repositioning can be accomplished. As the acceleration
approaches infinity; the AV approaches a value equal to one-half the value corre-
sponding to the minimum acceleration. The nature of this variation in AV is such that
a major portion of this possible AV reduction is obtained for an acceleration of ap-
proximately twice the minimum.

For a fixed change in longitude and fixed acceleration, there exists a minimum
time of transit for which longitude repositioning can be accomplished. The AV for a
transit time slightly larger than the minimum is significantly less than the AV for the
minimum transit time.

The AV required to remove any residual eccentricity at the end of the reposition-
ing maneuver is negligible, The Earth's triaxiality has a negligible effect on the AV
requirement.



INTRODUCTION

Communication satellites in synchronous equatorial orbit may have to be reposi-
tioned from one stationary longitude to another. For example the next generation of
high power communication satellites may be used for communications over sections of
Africa, Europe, and Asia. After some time, the satellite may be shifted in longitude
by as much as 180° for communications over North and South America. The systems
engineer must allow for the additional fuel required for the repositioning maneuver.

The term ''stationwalking'® is used in referring to the changing of the stationary
position of'a synchronous equatorial satellite from one longitude to another. For mini-
mum prope}lant consumption the stationwalking maneuver is most effectively accom-
plished by éhanging the orbit period with a thrust impulse collinear with the orbit ve-
locity vector., The change in orbit period produces a steady longitudinal drift of the
satellite, When the satellite reaches the desired longitude, a second thrust impulse is
applied to restore the synchronous condition. The second impulse is equal in magni-
tude but opposite in direction to the first.

Impulsive thrusting, however, may not always be permissible. Communication
satellites of the future may use electric propulsion for attitude control and stationkeeping
(see ref. 1) in order to keep the total propellant weight to a practical percentage of
spacecraft weight. To avoid duplication of hardware, the same propulsion system may
also be used for longitude repositioning. Due to very low thrust levels, continuous
thrust over many orbits may be necessary to effect a station change.

This report analyzes the stationwalking maneuver including the effects of nonim-
pulsive thrusting. Design curves are included in the report for calculating the AV re-
guirement for the stationwalking maneuver,

SYMBOLS
A acceleration imparted to satellite by propulsion system
Aminl AL,T minimum acceleration for a given change in longitude and time of transit
a semimajor axis of orbit
Aa variation of semimajor axis from semimajor axis of synchronous orbit
e eccentricity of orbit
€ max maximum eccentricity of orbit during nonimpulsive thrusting
f true anomaly



AV

AV e

A
AV

AV min I AL,A

AV i AL, T

VmaxlAL,A

max|AL,T

satellite longitude

change in longitude effected by repositioning maneuver
satellite longitude before repositioning maneuver
satellite longitude after repositioning maneuver

variation of orbit geocentric radius from geocentric radius of syn-
chronous orbit

time of transit from initial longitude to final longitude

minimum time of transit for a given change in longitude and acceleration
time

time duration of one thrusting period

time duration of coast period

velocity of satellite in circular synchronous orbit

velocity increment required for repositioning maneuver

velocity increment required for repositioning maneuver with triaxiality
effects accounted for

velocity increment required for removing residual eccentricity

maximum velocity increment for a given change in longitude and accel-
eration

maximum velocity increment for a given change in longitude and time
of transit

minimum velocity increment for a given change in longitude and accel-
eration

minimum velocity increment for a given change in longitude and time of
transit

satellite longitude relative to nearest minor axis of Earth's equatorial
section

average angular velocity of osculating orbit

variation of average angular velocity from angular velocity of circular
synchronous orbit

angular velocity of circular synchronous orbit

variation of satellite longitude from reference longitude



i Barth's gravitational constant

© angular distance of satellite from x-axis

w longitude of perigee measured from x-axis
Subscript:

0 initial condition

STATIONWALKING MANEUVERS
Impulsive Thrusting

A synchronous satellite has an average angular velocity of 360° per sidereal day.
To change the satellite position from longitude L1 to longitude L2, the angular ve-
locity, and hence the orbital period, must be modified. For example, suppose that the
change in longitude AL is 30° and the time of transit T from L1 to L2 is 10 days.
i the adjustment in orbital period is done impulsively, then the adjusted period must be
such as to cause the satellite to drift an average of 3° per day. So the adjusted average
angular velocity is either 363° per day or 357° per day, depending on whether the satel-
lite drifts eastward or westward. After 10 days, when the satellite is at longitude L2,
the orbital period must be restored to the synchronous condition.

The orbital period P is given by

3
P=2r4/%
i

where a is the semimajor axis and p is the Earth's gravitational constant. Thus the
only way to change the orbit period is to change the semimajor axis. To produce an -
eastward drift, P must be made smaller and a must be decreased. For westward
drift, P must be made larger and a must be increased.

The most effective method of changing the semimajor axis is to thrust eastward or
westward., Assume that L2 is to the east of Ll‘ For impulsive thrusting, the first
impulse must be directed westward in order to decrease the semimajor axis (see
fig. 1(a)). An apogee is created at the point of thrust application. After the satellite
has drifted to the desired longitude, a second thrust impulse is applied as shown in
figure 1(b). The second impulse, equal in magnitude but opposite in direction to the
first, restores the synchronous condition., The second impulse must be applied at the
apogee of the stationwalking orbit in order to remove the eccentricity. For the case of



Lo to the‘west of Ll’ the direction of the thrust vectors in figure 1 would be reversed.

Figure 2 shows orbital velocity and satellite longitude as functions of time for the
case of L2 to the east of Ll' The solid portions of the curves represent the average
velocity and average satellite longitude., The dashed portions represent the sinusoidal
oscillations due to the eccentricity of the stationwalking orbit. Although the first im-
pulse reduces the orbital velocity, the average velocity of the stationwalking orbit is
greater than the velocity of the synchronous orbit.

Nonimpulsive Thrusting

If low-thrust propulsion is used for stationwalking, impulsive thrusting is not
possible. For nonimpulsive thrusting, the stationwalking maneuver is carried out in
three phases. Let us assume that L2 is to the east of Ll' Let A be the acceleration
imparted to the satellite by the thruster. In the first phase, westward thrust is applied
for a time t1 determined by AL, T, and A. The second phase is a coast phase during
which the satellite drifts steadily eastward for a time t,. In the third phase, eastward
thrust is applied in order to increase the semimajor axis to its synchronous value. If
it is assumed that A is the same for both thrust periods, the third-phase thrusting
time is again tl‘ Figure 3 shows orbital velocity and satellite longitude for the case of
Ly = 0°% Ly=170°, T = 28 days, A = 3.4x10°° g's. The oscillatory components of the
velocity and longitude due to orbit eccentricity are not shown in figure 3.

In order to minimize fuel consumption, the thrusting time :Zt1 should be much
smaller than the coast time t2., For very low thrust levels, however, 2t1 may be of
the same order of magnitude as t2 (see fig. 3). In the general case, for a given Ll’
L2, A, and T, longitude as a function of time (neglecting oscillatory components due to
eccentricity) is given by

L=¢<§|él>t2+L O<ts<t (1a)

2a v

2
3|A |t 3|A|t
[l slald

= +L t, st=st, +t (1b)
a 25 1’ 1 1 2
L= i-<§_|_él)t2 ;(3|A|T)t .3lal <T2 - 2ty - 2t§>+L1, ty+ty<t=T (lc)
2a a 2a



When the double sign, + or ¥, is used, the upper sign is for the case of Lo to the east
of Lla The lower sign is for the case of Lo to the west of Ll" Notice that L(t) is
quadratic during the thrust periods and linear during the coast period.

Equations (1) along with the equations of the following sections are derived in ap-
pendiz A. The following assumptions were made in deriving these equations:

(1) The acceleration level A is constant through both thrusting periods.

(2) Errors in the magnitude and direction of thrust and in the time-off and time-on
of the thrusters are neglected.

(3) The effect that the Earth’s triaxiality has on satellite longitude is neglected.

Appendix B presents a discussion of how the Earth's triaxiality affects satellite
longitude, The analysis shows that for T less than 100 days, triaxiality has a negli-
gible effect on the repositioning maneuver requirements.

STATIONWALKING REQUIREMENTS

AV Requirement

If AL, T, and A are known parameters, then one can calculate the thrusting time
required for the stationwalking maneuver. From appendix A, the thrusting time is
given by

2_4a

% =T-,/T
1 3

(2)

&
A

The coast time, by the definitions of T and tl’ is

t2=T-2t1

The velocity increment AV needed to carry out the stationwalking maneuver is

2

In system design, two cases often occur. In one case AL and T are fixed param-
eters, and the system designer is interested in the functional relation of AV and A.
In the second case AL and A are the fixed parameters, and the functional relation
of AV and T is desired. These two cases are analyzed in the following sections.

AV=2t1A=<T- T2 _ 42
3




Fixed AL and T

If AL and T are fixed parameters, the acceleration level A must be greater
than a minimum value A . nl AL,T which corresponds to the case of continuously
thrusting from L1 to LZ’ that 1s, 2t1 = T. The minimum acceleration for fixed AL
and T is given by (see appendix A)

Aminl AL, T = >
3T
Figure 4 is a plot of Amml AL, T as a function of AL/T By using equation (3), it can
be shown that the partial derlvatlve of AV with respect to. A is less than zero, imply-
ing that the AV decreases as A increases when AL and T are fixed. Equivalently,
the AV has a maximum value Avma_xlAL T when A=A m1n|AL T and a minimum
value Amel AL, T when A = . From appendix A, AV | AL, T is one-half of

AVmax AL, T or’

AV SN - 2alaL| (5)

minjAL, T 9 ~ max AL, T 3T

Figure 5 is a plot of Avmaxl AL,T 282 function of AL/T.
The functional relation of AV and A for afixed AL and T is given in normal-
ized form by (see appendix A)

AV _ A 1o |- Aminl AL, T
A

(6)
AV paxlan, T Aminlan, T

Figure 6 is a plot of AV/AVmaX] AL, T as a function of A/AmmlAL T By differen-
tiating equation (6), it can be shown that the derivative of AV/ Avmaxl AL, T evaluated
at A/Amm\ AL,T = 1 is infinite, indicating that a significant saving in AV is achieved
when A is only slightly larger than Amm‘ AL, T A major portion of the possible re-
duction in AV is achieved when A is approx1mate1y twice Aml n‘ AL, T Figures 4,
5, and 6 can be used to calculate AV for given values of AL, T, and A, Figures 4
and 5 are used to find Amml AL, T and Avmaxl AL, T Knowing AvmaxlAL,T’
mmlAL T and A, the AV can be found from flgure 6.



Fixed AL and A

If AL and A are fixed parameters, the time of transit T must be greater than
a minimum value Tmi n‘ AL A which corresponds to the case of continuously thrusting
from L1 to L2° From apﬁendix A, the minimum transit time for fixed AL and A is

given by

_ 4al ALI

Toninl AL, A = (7)
3A

Figure 7 is a plot of Tminl AL A 252 function of AL/A. By using equation (3), it

can be shown that the partial derivative of AV with respect to T is less than zero,

implying that the AV decreases as T increases when AL and A are fixed, Edqui-

valently, the AV has a maximum value AVmax' AL, A when T = Tmml AL, A and a

minimum value AV l AL, A when T = «©, From append1xA Ame| AL, A and

min
AV max\AL A are given by

AV inl AL, 4 = © (8a)

4aA | AL
3

AVmaxI AL,A = (8b)

Figure 8 is a plot of AV l AL, A as a function of A AL,
The functional relatlon of AV and T for afixed AL and A is given in normal-
ized form by (see appendix A)

1-4/1- Tmin‘AL,A
T

AV _ T

(9)
AV

max| AL, A Tminl AL, A

Figure 9 is a plot of AV/ av., | AL, A as a function of T/ Tmml AL, A" The functional
relation of AV and T fora flxed AL and A is similar to the functional relation of
AV and A for afixed AL and T (compare eq. (9) with eq. (6) and fig. 9 with fig. 6).
One significant difference1 is that AV/AV | AL, A
as Av/ AVmatxlAL T 2 3 A/ AmmlAL T

By d1fferent1at1ng equation (9), it can be shown that the derivative of
AV/ Avmaxl AL, A evaluated at T/ Tmml AL,A = 1 is infinite, indicating that a signifi-
cant saving in AV is achieved when T is shghtly larger than m1nl AL, A Figures

-0 as T/Tmin‘ AL,A ™~ % where~



7, 8, and 9 can be used to calculate AV for given values of AL, T, and A. Figures
7 and 8 are used to find Tmi-nlAL,A and AVmax'AL,A’ Knowing Avmaxl AL, A’
Tminl AL. A’ and T, the AV can be found from figure 9.

If the ratio of propellant weight to spacecraft weight is assumed small, the propel-
lant weight as a function of AV is given by

P
glsp

where W_ is the propellant weight, W is the spacecraft weight, g is the acceleration
of gravity, and ISp is the specific impulse. Equation (10) can be used to calculate the
propellant weight once the AV is known.,

Orbit Eccentricity During Thrusting

Any residual eccentricity remaining at the end of the stationwalking maneuver must
be removed. With the assumption that the orbit is circular when thrusting begins, ec-
centricity during the thrusting phase is given by

A
e(t) = emax Sin —é—- v (11)
where § e is the angular velocity of the synchronous orbit and € nax is
41A
€ ax = —LE]- (12)
a@e

Equation (11), which is derived in appendix A, is plotted in figure 10. I nonimpulsive
thrusting is used, both thrusting periods should be an integral number of days so that the
stationwalking orbit and final synchronous orbit will be circular. If the thrusting periods
‘are not an integral number of days, the residual eccentricity will not be greater than

€ nax’ Let AVe be the velocity increment needed to remove the residual eccentricity.
From reference 1, AVe is bounded by

AV_ < AV = [max e (13)



Substituting equation (12) into equation (i3) results in

AV, s;z—lﬂ (14)
Oe

For A expressedin g's and AVe in meters per second, equation (14) becomes

Ave(.;ni < 2.9x10%| A (g's) (15)
sec

From equation (15), AVe is insignificant for very low accelerations (less than 10"5 g's).
For larger accelerations, the upper bound for AV e may become significant. It should
be noted, however, that by a judicious /choice of thrusting times, the eccentricity at

thrust cutoff can be made much closer to zero than to emax‘

CONCLUDING REMARKS

The purpose of this report is to analyze the methods and requirements for longitude
repositioning of a satellitein synchronous equatorial orbit. The method of longitude repo-
sitioning consists of an initial thrusting phase, a coast phase, and a final thrusting phase.
The thrust vector is directed eastward in one thrusting phase and westward in the other,

The redquirements for longitude repositioning are given in terms of the velocity in-
crement AV of the maneuver., The AV is a function of the change in longitude, the
time of transit from the initial to the final longitude, and the acceleration imparted to
the satellite by the propulsion system.

For a fixed change in longitude and time of transit, there exists a minimum accel-
eration for which longitude repositioning can be accomplished. As the acceleration ap-
proaches infinity the AV approaches a value equal to one-half the value corresponding
to the minimum acceleration. The nature of this variation in AV is such that a major
portion of this possible AV reduction is obtained for an acceleration of approximately
twice the minimum.

For a fixed change in longitude and fixed acceleration, there exists a minimum time -
of transit for which longitude repositioning can be accomplished. As the time of transit
approaches infinity, the AV approaches zero. The nature of this variation in AV is
such that a major portion of the possible AV reduction is obtained for a transit time
of approximately twice the minimum.

i0



The AV required to remove any residual eccentricity at the end of the repositioning
maneuver is negligible. The Earth's triaxiality has a negligible effect on the AV re-
quirement.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, January 5, 1971,
164-21.
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APPENDIX A

DERIVATION OF EQUATIONS

Assume that AL, T, and A are known quantities and that tl’ t2, and AV are to
be calculated. First we must find the change in semimajor axis due to tangential thrust-
ing. From reference 2, the time rate of change of the semimajor axis for a nearly cir-
cular orbit is

da_2a (A1)
dt 6

where § is the average angular velocity of the osculating orbit. The acceleration A is
assumed positive for eastward thrust and negative for westward thrust. If changes in
8 are assumed to be small, Aa is given by

Aa = —= (A2)

where t isthe time of thrusting.
We now wish to find a relation between Aa and the change in average angular ve-
locity A8, The average angular velocity is given by

o= [|-E (A3)

where o is the Earth's gravitational constant, If the variations Aa and Af are as-
sumed small, we obtain

Af=23 B Aq=739 Ay (A4)

2a a3 2a

Substituting equation (A2) into equation (A4) gives

-3At
a

A = (A5)

12



The stationwalking maneuver is carried out in three phases. The first and third
phases are thrusting phases, and the second phase is a coast. Let AL a be the change
in longitude during the first phase, ALb the change in longitude during the second
phase, and AL c the change in longitude during the third phase. We now proceed to find
ALa, ALb, AL c a8 functions of t1 and t2. The change in longitude AL aQ is given by

t, .
AL = f Af dt (A8)
a  Jo

Substituting equation (A5) into equation (A6) and carrying out the integration gives

2
- 3At1

AL = (A7)
a 2a

During the coasting phase, AD is constant and is equal to

-3At

Af =1 (A8)
a
The change in longitude ALb is given by
t2 L3
ALb = f Ag dt (A9)
0

Substituting equation (A8) into equation (A9) and carrying out the integration results in

_3At,t
AL, = 12 (A10)

a

We make the convention that the sign of A is determined by the direction of thrust dur-
ing the first phase. During the third phase, the direction of thrust is reversed. So AB
during the third phase, from equations (A5) and (A8), is given by

-3At
1, 3At

a a

Af =

(A11)

13



where t is the time elapsed in the third phase. If it is recalled that the first and third
stages are of the same duration, then

b,
AL = {laedt (A12)
¢ 0

Substituting equation (A11) into equation (A12) and carrying out the integration gives

-3at?  3at?
AL, = + (A13)
a 2a
By adding equations (A7), (A10), and (A13), we obtain
2
—3At1t2 3At1
AL = AL_ + AL, + AL = - (A14)
a b c
a a
Now t2 is given by
tg=T - 2’c1 (A15)
Substituting equation (A15) into equation (A14) yields
AL = 34 <t§ - Tt1> (A16)
a
Rearranging terms results in
2 a AL
t2 - Tt - =0 (A17)
1° 77 gp
Using the quadratic formula, we solve for the thrusting time 2t1 as follows:
2, =T - [, 224k (A18)

3A

From equation (A14), it is clear that AL and A are of opposite sign. So equation (A18)
can be written as

i4



_% (A19)

The AV is then given by

AV = 2t |A| =<T- 72 4alan| |A| (A20)

3|A]

We now wish to find Ame| AL, T’ the minimum AV for a fixed AL and T, By
taking the partial derivative of equatmn (A20) with respect to |A| it can be shown that

a(AV)
a|A|

<0 (A21)

for all permissible values of AL, T, and A. Thus equation (A20) is a monotonically
decreasing function of |A|, implying that the minimum AV occurs when |A| is infinite.

By taking the limit of equation (A20) as |A| approaches infinity, AV . | ,; 5 is cal-
culated to be ’
_ 2a
AV, .| = (A22)
min' AL, T" 3 TE

Equation (A21) implies that AV | AL, T’ the maximum AV for a fixed AL and T,
occurs when A is equal to its m1n1mum permissible value Am ml AL, T The minimum
acceleration occurs when 2t1 = T, or when the expression under the square root sign

in equati A19) is zero. Solving for A_ . ives

in equation ( )i ng mmIAL, T 8

_ 4a| AL (A23)

mm‘ AL, T 9
3T

By evaluating equation (A20) when A = A mi nl AL, T we obtain an expression for

a max‘AL T

_4a

Av maxlAL T 3

(A24)

ALE
T

Equations (A22) and (A24) imply that

i5



AV ezl oL, T = 28V minl Az, T (A25)

Combining equations (A20), (A23), and (A24) gives

A |
AV = A i - 1 - min AL:T (A26)
Vimax! AL, T Amin! AL, T A

A

We now wish to find AVmaXl AL A» the maximum AV for afixed AL and A. By
taking the partial derivative of equati’on (A20) with respect to T, it can be shown that

3AV) g (A27)
5T

for all permissible values of AL, T, and A. Thus equation (A20) is a monotonically
decreasing function of T, implying that the maximum AV occurs when T is equal to
its minimum permissible value, Tminl AL.A" The minimum time occurs when the ex-
?
pression under the square root sign in equation (A19) is zero. Solving for T_ . |
min'AL,A
results in

_ J4a jAL
Tyin AL, A = S5 ‘;I (A28)
Evaluating equation (A20) when T = Tmin\ AL . A» W€ obtain the following expression for
3
AVmaxl AL,A:
_ J4alA AL
AV axl AL, A = fa]a av| (429)

3

The minimum AV occurs when T is infinite, Taking the limit of equation (A20) as T
approaches infinity gives

AV vin a1, A = 0 (A30)

Combining equations (A20), (A28), and (A29) yields

| 2
_\/1 _(rmm AL, A (A31)
T

AV _ T

AVmaxlAL,A Tminlz.\J_;,A

16



Equations will now be derived for finding orbit eccentricity during the time of
thrusting. The coordinate system adopted is shown in figure 11, where the x-y system
is an inertial reference with origin at the Earth's center. The x-y plane is the equato-
rial plane. The angle w is the longitude of perigee measured from the x-axis, f is the
true anomaly, and ¢ is the angular distance of the satellite from the x-axis. From
figure 11 the angles w, f, and ¢ are related by the equation

f=¢p-w (A32)

The point B on the Earth’s equator is assumed to lie on the positive x-axis at t = 0.
Thus, attime t, the angle between the line OB and the positive x-axis is 6 et, where
ée is the angular velocity of the Earth's rotation (360° per sidereal day). Let Ax(t) be
the variation at time t of the satellite longitude from the longitude of point B. Then

AX(t) is given by
AV(t) = @ft) - Ot (A33)
. We now proceed to find eccentricity as a function of time with thrust beginning at

t = 0. We first derive equations for d(A))/dt, de/dt, and dw/dt. For an orbit with
small eccentricity, dg/dt is given to first order in e by (ref. 2)

49_ § , 2¢6 cos £ (A34)
dt

where 9 is the average angular velocity of the osculating orbit. The variation in 6 is
given by

Ab=6- 0, (A35)
Using equations (A32) to (A35) and recalling that 6~ 0 e result in

d(ar) _

AB + Zeée cos(Ax + éet - W) (A36)
dt

From equation (A5), A8 is given by

17



where A is the acceleration and a is the semimajor axis. The acceleration A is

assumed positive for eastward thrust and negative for westward thrust. Equation (A36)
can now be written as

A(ar) _ -3At | 905 cos(AN + 6.t - w) (A37)
dt a e €

From reference 2, de/dt and dw/dt are given to first order in e by

de _ 2A cos f _ 2A cos(M+eet- w)

; (A38)
dt aee aee
dt eaee ea.f)e

Equations (A37), (A38), (A39) from a coupled system of three first-order differen-
tial equations, If we assume that the change in AX is small over a one-orbit period,

then equations (A38) and (A39) form a coupled system of two equations to be solved over
a one-orbit period

de 2A cos(Ax + eet - w)

= . (A40)
dt aGe
2A sin(A\ + 6.t - w)
dw _ _° (A41)
dt eaé)e

In equations (A40) and (A41), A\ is assumed to remain approximately equal to its initial
value A)\O, To this point, we have not specified initial conditions. We now impose the
initial condition that ey = 0. To determine Wg> consider the case where the thrust is

in the eastward direction. At t= 0, the satellite's angular distance from the x-axis is
found from equation (A33) to be A = ¢(0). An eastward tangential thrust applied to a
circular orbit at the angular position AAO will create an instantaneous perigee at that
position. Thus, wg = A?xoo For thrust in the westward direction, wg = AAO + 7. The
solution to equations (A40) and (A41) satisfying the initial conditions is found by assuming
w 1is a linear function of time

18



0t
o(t) = 1Al gin J€° (A42)
-2 2
aee
6 ot
w(t) = —= + wg (A43)
2

Substituting equation (A42) into equation (A37) and integrating, we obtain the following
solution for AX(t):

2 )
m(t) = ang - 32 L 28 (1 cog g t) (A44)
2a <2
a9e

As an application of equations (A42) to (A44), consider first the case where t=0
corresponds to the beginning of thrusting. Equation (A42) implies that eccentricity is a
half sine wave over a 24-hour period with a maximum value of

e = é—lé—t (A45)

max .9

aGe

At the end of the 24-hour period, the eccentricity is again 0. We now re-initialize the
problem, the only change being that Ax, is no longer ¢(0). From equation (A44), the
new MO is given by

)
mrg = 9(0) - 22 24 nr)? = g(0) - & (A46)

2a 2

aee

Again the solution for e is a half sine wave over the second 24-hour period, By con-
tinuing the process, the eccentricity will be a succession of half sine waves with ampli-
tude given by equation (A45).
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APPENDIX B

EFFECT OF TRIAXIALITY ON STATIONWALKING MANEUVERS

An analysis of the effect of the Earth's triaxiality on a synchronous satellite is
given in reference 3. A brief synopsis of that analysis is presented here. The Earth's
equatorial cross section is approximately an ellipse whose minor axis passes through
74.6° east longitude and 105, 4° west longitude (ref. 4). These two longitudes are
stable points. Neglecting other perturbations, a synchronous satellite placed at either
of these longitudes will tend to stay there. If a satellite is positioned at any other lon-
gitude, it will undergo a longitudinal oscillation about the nearest minor axis. A simul-
taneous oscillation in orbit radius also occurs. The period of the oscillations in longi-
tude and radius is greater than 2,2 years.

In this appendix, the symbol y will denote longitude relative to the nearest minor
‘axis of the Earth's equatorial section. Figure 12 presents the oscillations in radius Ar
and longitude y for two cases. The initial longitude Y0 is 45° in the first case and
25° in the second case. The period of oscillation is 2.7 years for Yo = 45° and 2.3
years for v = 259,

In figure 13, we present another Ar - ¢ curve, except now we neglect triaxiality
effects and consider what happens when stationwalking from longitude 71 to longitude
Yo« We assume that the thrusting time is much smaller than the coasting time., If
T = 30 days is the given time of transit from 71 to Ygr then the first thrusting period
would produce a change Ar in the orbit radius. This maneuver corresponds to moving
from point A to point B in figure 13. During the coast phase, we move from Bto C, In
the second thrusting period, the synchronous radius is restored and we move from C
to D. Now assume that the time of transit is T'= 15 days, where T'< T, Then the
change in radius Ar' will have to be greater than Ar., The path followed is AB'C'D
instead of ABCD.

Figure 14 presents the Ar - y curve when the triaxiality effect is taken into ac-
count. Again assume that the time of transit is T or T'. The triaxiality produces a
change in radius during the coast phase. So the first change in radius, Ar, or Arj,
will not be the same as the second change, Arg or Ar:z. The dashed portion of the
curve represents the path that would occur if there were no second thrusting period.
Here it is assumed that Arg, Ar?, Ary, Ar‘z are less than 30 kilometers, For changes
in radius greater than 30 kilometers, the triaxiality effect is not great enough to
t*'capture’ the satellite and it would continue drifting westward in the absence of a sec~
ond thrusting period.
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Assume that Yis Y9 and T are given parameters. Let Ar be the necessary
change in radius, neglecting the triaxiality effect. Let Ary and Ar2 be the first and
second changes in radius when triaxiality is taken into account. L.et AV be the velocity
increment for the stationwalking maneuver when triaxiality is neglected. Let AV' be

the velocity increment when triaxiality is taken into account.

TABLE 1. - DATA FOR CASE OF y, = 20° AND y, = 10°

Table I presents an array

Time, Velocity Velocity Change First change |Second change
T, increment increment in radius in radius in radius
days when when when when when
triaxiality is | triaxiality is |triaxiality is | triaxiality is | triaxiality is
neglected, |accounted for,| neglected, |accounted for, |accounted for,
AV, AV, Ar, Arl, Arz,
m/sec m/sec m m m
26.0 2.19 2.18 30 000 29 000 30 700
46.2 1.23 1.22 16 900 15 200 18 200
66.4 . 86 .84 11 700 9 300 13 700
86.5 .66 .64 9 000 5 700 11 600
106.7 .53 .50 7 300 3 300 10 600
126.9 .45 .41 6 100 1100 10 200

of values of T, AV, AV', Ar, Ary, and Ar, for the case y, = 20° and y, = 10°. The
thrusting time is assumed to be much smaller than T, As T becomes larger, the dif-
ference between Ary and Ar2 becomes larger. Notice, however, that AV is only
slightly larger than AV' in all cases, the reason being that the sum of Ar1 and Ar2

is nearly equal to 2 Ar in.all cases.

One would suspect that AV - AV' is greatest when Y1 = Yy In this case the
stable longitude is midway between 121 and Y95 and AV*=0 if T is equal to one-half
the period of oscillation. But T would have to be greater than 1 year in such a case.
For T less than 100 days, AV and AV' are nearly the same, even for the case

Y1 = “Yge Figure 15 presents curves of AV and AV' when Y1 = "Vgr
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Figure 15. - Velocity increments with and without triaxiality effects as functions of
time of transit.

NASA-Langley, 1971 — 7 £-6037






